
Swift Standard Library Reference

Contents

Types 5

String 6
Creating a String 6

init() 6
init(count:, repeatedValue:) 6

Querying a String 7
var isEmpty { get } 7
hasPrefix(_ :) -> Bool 7
hasSuffix(_ :) -> Bool 8

Converting Strings 9
toInt() -> Int? 9

Operators 9
+ 9
+= 10
== 11
< 12

Array<T> 13
Creating an Array 13

init() 13
init(count:, repeatedValue:) 13

Accessing Array Elements 14
subscript(Int) -> T { get set } 14
subscript(Range<Int>) -> Slice<T> 15

Adding and Removing Elements 16
append() 16
insert(_ :, atIndex:) 17
removeAtIndex() -> T 18
removeLast() -> T 19
removeAll(keepCapacity: = false) 20
reserveCapacity() 20

Querying an Array 21
var count { get } 21

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

2

var isEmpty { get } 21
var capacity { get } 22

Algorithms 22
sort(_ :) 22
sorted(_ :) -> Array<T> 23
reverse() -> Array<T> 23
filter(_ :) -> Array<T> 24
map<U>(_ :) -> Array<U> 24
reduce<U>(_:, combine: (U, T)->U) -> U 25

Operators 26
+= 26

Dictionary<KeyType, ValueType> 28
Creating a Dictionary 28

init(minimumCapacity: = 2) 28
Accessing and Changing Dictionary Elements 29

subscript(KeyType) -> ValueType? { get set } 29
updateValue(_:, forKey:) -> ValueType? 30
removeValueForKey(_:) -> ValueType? 31
removeAll(keepCapacity: = false) 32

Querying a Dictionary 33
var count { get } 33
var keys { get } 33
var values { get } 34

Operators 34
== 34
!= 35

Numeric Types 36
Boolean Types 36
Integer Types 36
Floating Point Types 37

Protocols 38

Equatable 39
Determining Equality 39

== 39

Comparable 41

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

3

Contents

Comparing Values 41
< 41

Printable 43
Describing the Value 43

description { get } 43

Free Functions 45

Printing 46
Primary Functions 46

print<T>(_:) 46
println<T>(_:) 46
println() 47

Algorithms 48
Sorting 48

sort<T: Comparable>(inout array: T[]) 48
sort<T>(inout array: T[], pred: (T, T) -> Bool) -> T[] 49
sorted<T: Comparable>(array: T[]) -> T[] 49
sorted<T>(array: T[], pred: (T, T) -> Bool) -> T[] 50

Document Revision History 51

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

4

Contents

Important: This is a preliminary document for an API or technology in development. Apple is supplying
this information to help you plan for the adoption of the technologies and programming interfaces described
herein for use on Apple-branded products. This information is subject to change, and software implemented
according to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future betas of the API or technology.

 ● String (page 6)

 ● Array (page 13)

 ● Dictionary (page 28)

 ● Numeric Types (page 36)

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

5

Types

A String represents an ordered collection of characters.

For a full discussion of String, see Strings and Characters.

Creating a String

init()
Constructs an empty string.

Declaration

init()

Discussion
Creating a string using this constructor:

let emptyString = String()

is equivalent to using double-quote convenience syntax:

let equivalentString = ""

init(count:, repeatedValue:)
Constructs a string with a single character repeated a given number of times.

Declaration

init(count sz: Int, repeatedValue c: Character)

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

6

String

Discussion
The resulting string contains the supplied repeatedValue character, repeated count times:

let string = String(count: 5, repeatedValue: Character("a"))

// string is "aaaaa"

Querying a String

var isEmpty { get }
A Boolean value that determines whether the string is empty (read-only).

Declaration

var isEmpty: Bool { get }

Discussion
Use this read-only property to query whether the string is empty, which means it has no characters:

var string = "Hello, world!"

let firstCheck = string.isEmpty

// firstCheck is false

string = ""

let secondCheck = string.isEmpty

// secondCheck is true

hasPrefix(_ :) -> Bool
Returns a Boolean value that indicates whether the first characters in the receiver are the same as the characters
in a given string.

Declaration

func hasPrefix(prefix: String) -> Bool

String
Querying a String

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

7

Discussion
Use this method to determine whether the characters in a given string match exactly against the characters
at the beginning of the receiver:

let string = "Hello, world"

let firstCheck = string.hasPrefix("Hello")

// firstCheck is true

let secondCheck = string.hasPrefix("hello")

// secondCheck is false

hasSuffix(_ :) -> Bool
Returns a Boolean value that indicates whether the last characters in the receiver are the same as the characters
in a given string.

Declaration

func hasSuffix(suffix: String) -> Bool

Discussion
Use this method to determine whether the characters in a given string match exactly against the characters
at the end of the receiver:

let string = "Hello, world"

let firstCheck = string.hasSuffix("world")

// firstCheck is true

let secondCheck = string.hasSuffix("World")

// secondCheck is false

String
Querying a String

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

8

Converting Strings

toInt() -> Int?
Returns an optional integer, containing the result of attempting to convert the characters in the string into an
integer value.

Declaration

func toInt() -> Int?

Discussion
Use this method to convert a string of characters into an integer value. The method returns an optional—if
the conversion succeeded, the value will be the resulting integer; if the conversion failed, the value will be
nil:

let string = "42"

if let number = string.toInt() {

println("Got the number: \(number)")

} else {

println("Couldn't convert to a number")

}

// prints "Got the number: 42"

Operators

+
Concatenates two strings, or a string and a character, or two characters.

Declaration

func + (lhs: String, rhs: String) -> String

func + (lhs: String, rhs: Character) -> String

func + (lhs: Character, rhs: String) -> String

String
Converting Strings

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

9

func + (lhs: Character, rhs: Character) -> String

Discussion
Use the + operator to concatenate two strings:

let combination = "Hello " + "world"

// combination is "Hello world"

If the value supplied on the left hand side of the operator is an empty string, the resultant value is the unmodified
value on the right hand side.

You can use the + operator with two strings as shown in the combination example, or with a string and a
character in either order:

let exclamationPoint: Character = "!"

let charCombo = combination + exclamationPoint

// charCombo is "Hello world!"

let extremeCombo = exclamationPoint + charCombo

// extremeCombo is "!Hello world!"

Alternatively, you can combine two characters to form a string:

let first: Character = "a"

let second: Character = "b"

let result = first + second

// result is a String with the value "ab"

+=
Appends a string or character to an existing string.

Declaration

@assignment func += (inout lhs: String, rhs: String)

String
Operators

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

10

@assignment func += (inout lhs: String, rhs: Character)

Discussion
Use the += operator to append a string or character at the end of an existing string:

var string = "Hello "

string += "world!"

// string is "Hello world!"

If the initial string is empty, the resultant value is the unmodified rhs value.

You can use the += operator to append either another string, or a character:

var character: Character = "?"

string += character

// string is "Hello world!?"

You can only use the += operator to append if you declared the original string or character using the var
keyword (that is, as a variable and not a constant):

let string = "Hello "

string += "world!"

// Error: could not find an overload for '+=' that accepts the supplied arguments

==
Determines the equality of two strings.

Declaration

func == (lhs: String, rhs: String) -> Bool

Discussion
Evaluates to true if the two string values contain exactly the same characters in exactly the same order:

let string1 = "Hello world!"

String
Operators

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

11

let string2 = "Hello" + " " + "world" + "!"

let result = string1 == string2

// result is true

<
Performs a lexicographical comparison to determine whether one string evaluates as less than another.

Declaration

func < (lhs: String, rhs: String) -> Bool

Discussion
Evaluates to true if the lhs value is less than the rhs value, by performing a lexicographical comparison of
the characters:

let string1 = "Number 3"

let string2 = "Number 2"

let result1 = string1 < string2

// result1 is false

let result2 = string2 < string1

// result2 is true

String
Operators

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

12

An Array is a generic type that manages an ordered collection of items, all of which must be of the same
underlying type (T).

For more information about Array, see Collection Types.

Creating an Array

init()
Constructs an empty array of type T.

Declaration

init()

Discussion
Creating an array using this constructor:

var emptyArray = Array<Int>()

is equivalent to using the convenience syntax:

var equivalentEmptyArray = [Int]()

init(count:, repeatedValue:)
Constructs an array with a given number of elements, each initialized to the same value.

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

13

Array<T>

Declaration

init(count: Int, repeatedValue: T)

Discussion
The resulting array will have count elements in it, each initialized to the same value provided as the value for
repeatedValue.

For example:

let numericArray = Array(count: 3, repeatedValue: 42)

// numericArray is [42, 42, 42]

let stringArray = Array(count: 2, repeatedValue: "Hello")

// stringArray is ["Hello", "Hello"]

Accessing Array Elements

subscript(Int) -> T { get set }
Gets or sets existing elements in an array using square bracket subscripting.

Declaration

subscript(index: Int) -> T { get { } nonmutating set { } }

Discussion
Use subscripting to access the individual elements in any array:

var subscriptableArray = ["zero", "one", "two", "three"]

let zero = subscriptableArray[0]

// zero is "zero"

let three = subscriptableArray[3]

// three is "three"

Array<T>
Accessing Array Elements

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

14

If you declare the array using the var keyword (that is, as a variable), you can also use subscripting to change
the value of any existing element in the array:

subscriptableArray[0] = "nothing"

subscriptableArray[3] = "three items"

It is not possible to insert additional items into the array using subscripting:

subscriptableArray[4] = "new item"

// Fatal error: Array index out of range

Instead, use the append() (page 16) function, or the += (page 26) operator.

You cannot use subscripting to change the value of any existing element in an array that you declare using
the let keyword (that is, as a constant):

let constantArray = ["zero", "one", "two", "three"]

constantArray[0] = "nothing"

// Error: cannot mutate a constant array

subscript(Range<Int>) -> Slice<T>
Gets or sets a subrange of existing elements in an array using square bracket subscripting with an integer
range.

Declaration

subscript(subRange: Range<Int>) -> Slice<T> { get { } set { } }

Discussion
Use range subscripting to access one or more existing elements in any array:

var subscriptableArray = ["zero", "one", "two", "three"]

let subRange = subscriptableArray[1...3]

// subRange = ["one", "two", "three"]

Array<T>
Accessing Array Elements

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

15

If you declare the array using the var keyword (that is, as a variable), you can also use subscripting to change
the values of a range of existing elements:

subscriptableArray[1...2] = ["oneone", "twotwo"]

// subscriptableArray is now ["zero", "oneone", "twotwo", "three"]

You do not need to provide the same number of items as you are replacing:

subscriptableArray[1...2] = []

// subscriptableArray is now ["zero", "three"]

It is not possible to insert additional items into the array using subscripting:

subscriptableArray[4...5] = ["four", "five"]

// Fatal error: Array replace: subRange extends past the end

You cannot use subscripting to change any values in an array that you declare using the let keyword (that
is, as a constant):

let constantArray = ["zero", "one", "two", "three"]

constantArray[1...2] = []

// Error: cannot mutate a constant array

Instead, use the append() (page 16) function, or the += (page 26) operator.

Adding and Removing Elements

append()
Adds a new item as the last element in an existing array.

Declaration

mutating func append(newElement: T)

Array<T>
Adding and Removing Elements

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

16

Discussion
Use this method to add a new item to an existing array. The new element will be added as the last item in the
collection:

var array = [0, 1]

array.append(2)

// array is [0, 1, 2]

array.append(3)

// array is [0, 1, 2, 3]

You can only append new values to an array if you declared the array using the var keyword (that is, as a
variable and not a constant):

let constantArray = [0, 1]

constantArray.append(2)

// Error: immutable value of type '[Int]' only has mutating members named 'append'

insert(_ :, atIndex:)
Inserts an element into the collection at a given index.

Declaration

mutating func insert(newElement: T, atIndex: Int)

Discussion
Use this method to insert a new element anywhere within the range of existing items, or as the last item:

var array = [1, 2, 3]

array.insert(0, atIndex: 0)

// array is [0, 1, 2, 3]

The index must be less than or equal to the number of items in the collection. If you attempt to insert an item
at a greater index, you’ll trigger an assertion:

Array<T>
Adding and Removing Elements

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

17

array.insert(6, atIndex: 6)

// Fatal error: Array replace: subRange extends past the end

You can only insert new values in an array if you declared the array using the var keyword (that is, as a variable
and not a constant):

let constantArray = [1, 2, 3]

constantArray.insert(0, atIndex: 0)

// Error: immutable value of type '[Int]' only has mutating members named 'insert'

removeAtIndex() -> T
Removes the element at the given index and returns it.

Declaration

mutating func removeAtIndex(index: Int) -> T

Discussion
Use this method to remove an element at the given index. The return value of the method is the element
that was removed:

var array = [0, 1, 2, 3]

let removed = array.removeAtIndex(0)

// array is [1, 2, 3]

// removed is 0

The index must be less than the number of items in the collection. If you attempt to remove an item at a greater
index, you’ll trigger an assertion:

array.removeAtIndex(5)

// Fatal error: Array index out of range

You can only remove an element from an array if you declared the array using the var keyword (that is, as a
variable and not a constant):

Array<T>
Adding and Removing Elements

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

18

let constantArray = [0, 1, 2]

constantArray.removeAtIndex(0)

// Error: immutable value of type '[Int]' only has mutating members named
'removeAtIndex'

removeLast() -> T
Removes the last element from the collection and returns it.

Declaration

mutating func removeLast() -> T

Discussion
Use this method to remove the last element in the receiver. The return value of the method is the element
that was removed:

var array = [1, 2, 3]

let removed = array.removeLast()

// array is [1, 2]

// removed is 3

There must be at least one element in the array before you call this method—if you call this method on an
empty array, you’ll trigger an assertion:

var emptyArray = [Int]()

let tryToRemove = emptyArray.removeLast()

// Fatal error: can't removeLast from an empty Array

You can only remove the last item from an array if you declared the array using the var keyword (that is, as a
variable and not a constant):

let constantArray = [1, 2]

constantArray.removeLast()

// Error: immutable value of type '[Int]' only has mutating members named
'removeLast'

Array<T>
Adding and Removing Elements

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

19

removeAll(keepCapacity: = false)
Removes all the elements from the collection, and by default clears the underlying storage buffer.

Declaration

mutating func removeAll(keepCapacity: Bool = false)

Discussion
Use this method to remove all of the elements in the array:

var array = [0, 1, 2, 3]

array.removeAll()

let count = array.count

// count is 0

Unless you specify otherwise, the underlying backing storage will be cleared.

You can only remove all items from an array if you declared the array using the var keyword (that is, as a
variable and not a constant):

let constantArray = [1, 2]

constantArray.removeLast()

// Error: immutable value of type '[Int]' only has mutating members named 'removeAll'

reserveCapacity()
Ensures that the underlying storage can hold the given total number of elements.

Declaration

mutating func reserveCapacity(minimumCapacity: Int)

Discussion
Ensure that the array has enough contiguous underlying backing storage to store the total number of elements
specified for minimumCapacity.

Array<T>
Adding and Removing Elements

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

20

Querying an Array

var count { get }
An integer value that represents the number of elements in the array (read-only).

Declaration

var count: Int { get }

Discussion
Use this read-only property to query the number of elements in the array:

var array = ["zero", "one", "two"]

let firstCount = array.count

// firstCount is 3

array += "three"

let secondCount = array.count

// secondCount is 4

var isEmpty { get }
A Boolean value that determines whether the array is empty (read-only).

Declaration

var isEmpty: Bool { get }

Discussion
Use this read-only property to query whether the array is empty:

var array = ["zero", "one", "two", "three"]

let firstCheck = array.isEmpty

// firstCheck is false

Array<T>
Querying an Array

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

21

array.removeAll()

let secondCheck = array.isEmpty

// secondCheck is true

var capacity { get }
An integer value that represents how many total elements the array can store without reallocation (read-only).

Declaration

var capacity: Int { get }

Discussion
Use this read-only property to query how many total elements the array can store without triggering a
reallocation of the backing storage.

Algorithms

sort(_ :)
Sorts the receiver in place using a given closure to determine the order of a provided pair of elements.

Declaration

mutating func sort(isOrderedBefore: (T, T) -> Bool)

Discussion
Use this method to sort elements in the receiver. The closure that you supply for isOrderedBefore should
return a Boolean value to indicate whether one element should be before (true) or after (false) another
element:

var array = [3, 2, 5, 1, 4]

array.sort { $0 < $1 }

// array is [1, 2, 3, 4, 5]

Array<T>
Algorithms

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

22

array.sort { $1 < $0 }

// array is [5, 4, 3, 2, 1]

You can only use sort an array in place if you declared the array using the var keyword (that is, as a variable):

let constantArray = [3, 2, 5, 1, 4]

constantArray.sort { $0 < $1 }

// Error: immutable value of type [Int] only has mutating members named 'sort'

sorted(_ :) -> Array<T>
Returns an array containing elements from the receiver sorted using a given closure.

Declaration

func sorted(isOrderedBefore: (T, T) -> Bool) -> Array<T>

Discussion
Use this method to return a new array containing sorted elements from the receiver. The closure that you
supply for isOrderedBefore should return a Boolean value to indicate whether one element should be
before (true) or after (false) another element:

let array = [3, 2, 5, 1, 4]

let sortedArray = array.sorted { $0 < $1 }

// sortedArray is [1, 2, 3, 4, 5]

let descendingArray = array.sorted { $1 < $0 }

// descendingArray is [5, 4, 3, 2, 1]

reverse() -> Array<T>
Returns an array containing the elements of the receiver in reverse order by index.

Array<T>
Algorithms

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

23

Declaration

func reverse() -> Array<T>

Discussion
Use this method to return an array containing the elements of the receiver in reverse order; that is, the last
item will be the first, the penultimate will be the second, and so on:

let array = [1, 2, 3, 4, 5]

let reversedArray = array.reverse()

// reversedArray = [5, 4, 3, 2, 1]

filter(_ :) -> Array<T>
Returns an array containing the elements of the receiver for which a provided closure indicates a match.

Declaration

func filter(includeElement: (T) -> Bool) -> Array<T>

Discussion
Use this method to return a new array by filtering an existing array. The closure that you supply for
includeElement: should return a Boolean value to indicate whether an element should be included (true)
or excluded (false) from the final collection:

let array = [0, 1, 2, 3, 4, 5, 6, 7]

let filteredArray = array.filter { $0 % 2 == 0 }

// filteredArray is [0, 2, 4, 6]

map<U>(_ :) -> Array<U>
Returns an array of elements built from the results of applying a provided transforming closure for each element.

Declaration

func map<U>(transform: (T) -> U) -> Array<U>

Array<T>
Algorithms

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

24

Discussion
Use this method to return a new array containing the results of applying a provided closure to transform each
element in the receiver:

let array = [0, 1, 2, 3]

let multipliedArray = array.map { $0 * 2 }

// multipliedArray is [0, 2, 4, 6]

let describedArray = array.map { "Number: \($0)" }

// describedArray is [Number: 0, Number: 1, Number: 2, Number: 3]

reduce<U>(_:, combine: (U, T)->U) -> U
Returns a single value representing the result of applying a provided reduction closure for each element.

Declaration

func reduce<U>(initial: U, combine: (U, T) -> U) -> U

Discussion
Use this method to reduce a collection of elements down to a single value by recursively applying the provided
closure:

let array = [1, 2, 3, 4, 5]

let addResult = array.reduce(0) { $0 + $1 }

// addResult is 15

let multiplyResult = array.reduce(1) { $0 * $1 }

// multiplyResult is 120

The two results build as follows:

1. The arguments to the first closure call are the initial value you supply, and the first element in the collection.

In the addResult case, that means an initialValue of 0 and a first element of 1: { 0 + 1 }.

In the multiplyResult case, that means an initialValue of 1 and a first element of 1: {1 * 1}.

Array<T>
Algorithms

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

25

2. Next, the closure is called with the previous result as the first argument, and the second element as the
second argument.

In the addResult case, that means a result of 1 and the next item 2: { 1 + 2 }.

In the multiplyResult case, that means a result of 1 and the next item 2: { 1 * 2 }.

3. The closures continue to be called with the previous result and the next element as arguments:

In the addResult case, that means {3 + 3}, {6 + 4}, {10 + 5}, with a final result of 15.

In the multiplyResult case, that means {2 * 3}, {6 * 4}, {24 * 5}, with a final result of 120.

Operators

+=
Appends an element or sequence of elements to an existing array.

Declaration

@assignment func += <U>(inout lhs: Array<T>, rhs: U)

Discussion
The += operator offers an easy way to append a single element or a sequence of elements to the end of an
existing array:

var array = [0, 1, 2]

array += 3

// array is [0, 1, 2, 3]

array += [4, 5, 6]

// array is [0, 1, 2, 3, 4, 5, 6]

The type of the element or elements must match the type of the existing elements in the array:

array += "hello"

// Error: could not find an overload for '+=' that accepts the supplied arguments

Array<T>
Operators

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

26

You can only append new values to an array if you declared the array using the var keyword (that is, as a
variable and not a constant):

let constantArray = [0, 1, 2]

constantArray += 3

// Error: could not find an overload for '+=' that accepts the supplied arguments

Array<T>
Operators

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

27

A Dictionary is a generic type that manages an unordered collection of key-value pairs. All of a dictionary's
keys must be compatible with its key type (KeyType). Likewise, all of a dictionary's values must be compatible
with its value type (ValueType).

For more information about Dictionary, see Collection Types.

Creating a Dictionary

init(minimumCapacity: = 2)
Constructs an empty dictionary with capacity for at least the specified number of key-value pairs.

Declaration

init(minimumCapacity: Int = 2)

Discussion
You can create a dictionary using this constructor without specifying a value for minimumCapacity, in which
case its default value of 2 will be used:

var emptyDictionary = Dictionary<String, Int>()

// constructs an empty dictionary ready to contain String keys and integer values

If you do provide a minimumCapacity value, note that the actual capacity reserved by the dictionary may be
larger than the value you provide.

Creating a dictionary using this constructor is equivalent to using the convenience syntax:

var equivalentEmptyDictionary = [String: Int]()

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

28

Dictionary<KeyType, ValueType>

Accessing and Changing Dictionary Elements

subscript(KeyType) -> ValueType? { get set }
Gets, sets, or deletes a key-value pair in a dictionary using square bracket subscripting.

Declaration

subscript(key: KeyType) -> ValueType? { get { } set { } }

Discussion
Use subscripting to access the individual elements in any dictionary. The value returned from a dictionary's
subscript is of type ValueType?—an optional with an underlying type of the dictionary’s ValueType:

var dictionary = ["one": 1, "two": 2, "three": 3]

let value = dictionary["two"]

// value is an optional integer with an underlying value of 2

In this example, value is of type Int?, not Int. Use optional binding to query and unwrap a dictionary
subscript's return value if it is non-nil:

if let unwrappedValue = dictionary["three"] {

println("The integer value for \"three\" was: \(unwrappedValue)")

}

// prints "The integer value for "three" was: 3"

You can also use subscripting to change the value associated with an existing key in the dictionary, add a new
value, or remove the value for a key by setting it to nil:

dictionary["three"] = 33

// dictionary is now ["one": 1, "two": 2, "three": 33]

dictionary["four"] = 4

// dictionary is now ["one": 1, "two": 2, "three": 33, "four": 4]

dictionary["three"] = nil

Dictionary<KeyType, ValueType>
Accessing and Changing Dictionary Elements

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

29

// dictionary is now ["one": 1, "two": 2, "four": 4]

Values in a dictionary can be changed, added, or removed with subscripting only if the dictionary is defined
with the var keyword (that is, if the dictionary is mutable):

let constantDictionary = ["one": 1, "two": 2, "three": 3]

constantDictionary["four"] = 4

// Error: could not find an overload for 'subscript' that accepts the supplied
arguments

updateValue(_:, forKey:) -> ValueType?
Inserts or updates a value for a given key and returns the previous value for that key if one existed, or nil if
a previous value did not exist.

Declaration

mutating func updateValue(value: ValueType, forKey: KeyType) -> ValueType?

Discussion
Use this method to insert or update a value for a given key, as an alternative to subscripting. This method
returns a value of type ValueType?—an optional with an underlying type of the dictionary’s ValueType:

var dictionary = ["one": 1, "two": 2, "three": 3]

let previousValue = dictionary.updateValue(22, forKey: "two")

// previousValue is an optional integer with an underlying value of 2

In this example, previousValue is of type Int?, not Int. Use optional binding to query and unwrap the
return value if it is non-nil:

if let unwrappedPreviousValue = dictionary.updateValue(33, forKey: "three") {

println("Replaced the previous value: \(unwrappedPreviousValue)")

} else {

println("Added a new value")

}

Dictionary<KeyType, ValueType>
Accessing and Changing Dictionary Elements

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

30

// prints "Replaced the previous value: 3"

Values in a dictionary can be updated using this method only if the dictionary is defined with the var keyword
(that is, if the dictionary is mutable):

let constantDictionary = ["one": 1, "two": 2, "three": 3]

constantDictionary.updateValue(4, forKey: "four")

// Error: immutable value of type '[String: Int]' only has mutating members named
'updateValue'

removeValueForKey(_:) -> ValueType?
Removes the key-value pair for the specified key and returns its value, or nil if a value for that key did not
previously exist.

Declaration

mutating func removeValueForKey(key: KeyType) -> ValueType?

Discussion
Use this method to remove a value for a given key, as an alternative to assigning the value nil using
subscripting. This method returns a value of type ValueType?—an optional with an underlying type of the
dictionary’s ValueType:

var dictionary = ["one": 1, "two": 2, "three": 3]

let previousValue = dictionary.removeValueForKey("two")

// previousValue is an optional integer with an underlying value of 2

In this example, previousValue is of type Int?, not Int. Use optional binding to query and unwrap the
return value if it is non-nil:

if let unwrappedPreviousValue = dictionary.removeValueForKey("three") {

println("Removed the old value: \(unwrappedPreviousValue)")

} else {

println("Didn't find a value for the given key to delete")

}

Dictionary<KeyType, ValueType>
Accessing and Changing Dictionary Elements

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

31

// prints "Removed the old value: 3"

Values in a dictionary can be removed using this method only if the dictionary is defined with the var keyword
(that is, if the dictionary is mutable):

let constantDictionary = ["one": 1, "two": 2, "three": 3]

constantDictionary.removeValueForKey("four")

// Error: immutable value of type '[String, Int]' only has mutating members named
'removeValueForKey'

removeAll(keepCapacity: = false)
Removes all key-value pairs from the dictionary, and by default clears up the underlying storage buffer.

Declaration

mutating func removeAll(keepCapacity: Bool = default)

Discussion
Use this method to remove all of the key-value pairs in the dictionary:

var dictionary = ["one": 1, "two": 2, "three": 3]

dictionary.removeAll()

// dictionary is now an empty dictionary

Unless you specify otherwise, the underlying backing storage will be cleared.

Values in a dictionary can be removed using this method only if the dictionary is defined with the var keyword
(that is, if the dictionary is mutable):

let constantDictionary = ["one": 1, "two": 2, "three": 3]

constantDictionary.removeAll()

// Error: immutable value of type '[String, Int]' only has mutating members named
'removeAll'

Dictionary<KeyType, ValueType>
Accessing and Changing Dictionary Elements

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

32

Querying a Dictionary

var count { get }
An integer value that represents the number of key-value pairs in the dictionary (read-only).

Declaration

var count: Int { get }

Discussion
Use this read-only property to query the number of elements in the dictionary:

var dictionary = ["one": 1, "two": 2, "three": 3]

let elementCount = dictionary.count

// elementCount is 3

var keys { get }
Returns an unordered iterable collection of all of a dictionary’s keys.

Declaration

var keys: MapCollectionView<Dictionary<KeyType, ValueType>, KeyType> { get }

Discussion
Use this read-only property to retrieve an iterable collection of a dictionary’s keys:

var dictionary = ["one": 1, "two": 2, "three": 3]

for key in dictionary.keys {

println("Key: \(key)")

}

// prints "Key: one\nKey: two\nKey: three"

To use a dictionary’s keys with an API that takes an Array instance, initialize a new array with the keys property:

Dictionary<KeyType, ValueType>
Querying a Dictionary

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

33

let array = Array(dictionary.keys)

// array is ["one", "two", "three"]

var values { get }
Returns an unordered iterable collection of all of a dictionary’s values.

Declaration

var values: MapCollectionView<Dictionary<KeyType, ValueType>, ValueType> { get }

Discussion
Use this read-only property to retrieve an iterable collection of a dictionary’s values:

var dictionary = ["one": 1, "two": 2, "three": 3]

for value in dictionary.values {

println("Value: \(value)")

}

// prints "Value: 1\nValue: 2\nValue: 3"

To use a dictionary’s values with an API that takes an Array instance, initialize a new array with the values
property:

let array = Array(dictionary.values)

// array is [1, 2, 3]

Operators

==
Determines the equality of two dictionaries.

Dictionary<KeyType, ValueType>
Operators

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

34

Declaration

func == <KeyType : Equatable, ValueType : Equatable>(lhs: Dictionary<KeyType,
ValueType>, rhs: Dictionary<KeyType, ValueType> -> Bool

Discussion
Evaluates to true if the two dictionaries contain exactly the same keys and values:

let dictionary1 = ["one": 1, "two": 2]

var dictionary2 = ["one": 1]

dictionary2["two"] = 2

let result = dictionary1 == dictionary2

// result is true

!=
Determines the inequality of two dictionaries.

Declaration

func != <KeyType : Equatable, ValueType : Equatable>(lhs: Dictionary<KeyType,
ValueType>, rhs: Dictionary<KeyType, ValueType> -> Bool

Discussion
Evaluates to true if the two dictionaries do not contain exactly the same keys and values:

let dictionary1 = ["one": 1, "two": 2]

let dictionary2 = ["one": 1]

let result = dictionary1 != dictionary2

// result is true

Dictionary<KeyType, ValueType>
Operators

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

35

The Swift standard library contains many standard numeric types, suitable for storing Boolean, integer, and
floating-point values.

Boolean Types
Swift includes one Boolean type, Bool, which may be either true or false.

Integer Types
The primary integer type in Swift is Int, which is word-sized. This means that it holds 32 bits on 32-bit platforms,
and 64 bits on 64-bit platforms.

For the majority of use cases, you should use the base Int type.

If you require a type with a specific size or signedness, for example to work with raw data, Swift also includes
the following types:

Maximum ValueMinimum ValueType

127-128Int8

32,767-32,768Int16

2,147,483,647-2,147,483,648Int32

9,223,372,036,854,775,807-9,223,372,036,854,775,808Int64

2550UInt8

65,5350UInt16

4,294,967,2950UInt32

18,446,744,073,709,551,6150UInt64

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

36

Numeric Types

Floating Point Types
The primary floating-point type in Swift is Double, which uses 64 bits. If you do not require 64-bit precision,
Swift also includes a 32-bit Float type.

Numeric Types
Floating Point Types

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

37

 ● Equatable (page 39)

 ● Comparable (page 41)

 ● Printable (page 43)

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

38

Protocols

The Equatable protocol makes it possible to determine whether two values of the same type are considered
to be equal.

There is one required operator overload defined in the protocol: ==.

Determining Equality

==
Determines the equality of two values of the same type.

Declaration

func == (lhs: Self, rhs: Self) -> Bool

Discussion
To conform to the protocol, you must provide an operator declaration for == at global scope. You should return
true if the provided values are equal, otherwise false.

It is up to you to determine what equality means:

struct MyStruct: Equatable {

var name = "Untitled"

}

func == (lhs: MyStruct, rhs: MyStruct) -> Bool {

return lhs.name == rhs.name

}

let value1 = MyStruct()

var value2 = MyStruct()

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

39

Equatable

let firstCheck = value1 == value2

// firstCheck is true

value2.name = "A New Name"

let secondCheck = value1 == value2

// secondCheck is false

Equatable
Determining Equality

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

40

The Comparable protocol makes it possible to compare two values of the same type.

There is one required operator overload defined in the protocol (<), as well as one defined in the inherited
Equatable (page 39) protocol (==). By adopting the Comparable protocol and adding an operator overload
for <, you automatically gain the ability to use >, <=, and >=.

Comparing Values

<
Determines whether one value is less than another value of the same type.

Declaration

func < (lhs: Self, rhs: Self) -> Bool

Discussion
To conform to the protocol, you must provide an operator declaration for < at global scope. You should return
true if the lhs value is less than the rhs value, otherwise false.

It is up to you to determine what "less than” means:

struct MyStruct: Comparable {

var name = "Untitled"

}

func < (lhs: MyStruct, rhs: MyStruct) -> Bool {

return lhs.name < rhs.name

}

// and == operator overload too (required - see Equatable)

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

41

Comparable

let value1 = MyStruct()

var value2 = MyStruct()

let firstCheck = value1 < value2

// firstCheck is false

value2.name = "A New Name"

let secondCheck = value2 < value1

// secondCheck is true

Comparable
Comparing Values

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

42

The Printable protocol allows you to customize the textual representation of any type ready for printing (for
example, to Standard Out).

A type must adopt this protocol if you wish to supply a value of that type to, for example, the print<T>(_:) (page
46) and println<T>(_:) (page 46) functions.

Describing the Value

description { get }
A string containing a suitable textual representation of the receiver (read-only).

Declaration

var description: String { get }

Discussion
This property is required for any type that adopts the Printable protocol. Use it to determine the textual
representation to print when, for example, calling the print<T>(_:) (page 46) and println<T>(_:) (page 46)
functions:

struct MyType: Printable {

var name = "Untitled"

var description: String {

return "MyType: \(name)"

}

}

let value = MyType()

println("Created a \(value)")

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

43

Printable

// prints "Created a MyType: Untitled"

Printable
Describing the Value

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

44

 ● Printing (page 46)

 ● Algorithms (page 48)

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

45

Free Functions

There are two primary functions for printing values to Standard Out in the Swift standard library: print()
and println(). The println() function is overloaded to receive either a value to print, or no value, in which
case it prints a newline character.

Both functions are global free functions, which means they may be called in their own right without a receiver:

print("Hello, world!\n")

println("Hello, world!")

Primary Functions

print<T>(_:)
Writes the textual representation of a provided value to Standard Out.

Declaration

func print<T>(object: T)

Discussion
The value you supply for object must conform to the Printable (page 43) or DebugPrintable (page $@)
protocol:

print("Hello, world\n")

// prints "Hello, world" followed by a new line character

println<T>(_:)
Writes the textual representation of a provided value, followed by a newline character, to Standard Out.

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

46

Printing

Declaration

func println<T>(object: T)

Discussion
The value you supply for object must conform to the Printable (page 43) or DebugPrintable (page $@)
protocol:

println("Hello, world")

// prints "Hello, world" followed by a new line character

println()
Writes a newline character to Standard Out.

Declaration

func println()

Discussion
Call this function without any values to print a newline character to Standard Out:

print("Hello, world")

println()

// prints "Hello, world" followed by a new line character

Printing
Primary Functions

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

47

The Swift standard library contains a variety of algorithms to aid with common tasks, including sorting, finding,
and many more.

More information forthcoming.

Sorting

sort<T: Comparable>(inout array: T[])
Sorts in place the elements of an array, all of which must be comparable and equatable.

Declaration

func sort<T: Comparable>(inout array: T[])

Discussion
Use this method to sort a mutable array in place using the standard < (page 41) operator. All values in the
array must be of types that conform to the Comparable (page 41) protocol, which inherits from the
Equatable (page 39) protocol:

var array = [5, 1, 6, 4, 2, 3]

sort(&array)

// array is [1, 2, 3, 4, 5, 6]

You can only use this method with an array declared using the var keyword (that is, a variable):

let constantArray = [5, 1, 6, 4, 2, 3]

sort(&constantArray)

// Fatal Error: cannot mutate a constant array

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

48

Algorithms

sort<T>(inout array: T[], pred: (T, T) -> Bool) -> T[]
Sorts in place an array of elements using a given predicate closure.

Declaration

func sort<T>(inout array: [T], predicate: (T, T) -> Bool)

Discussion
Use this method to sort a mutable array of elements in place using a closure. The closure must return a Boolean
value to indicate whether the two items are in ascending order (true) or descending order (false):

var array = [5, 1, 3, 4, 2, 6]

sort(&array) { $0 > $1 }

// array is [6, 5, 4, 3, 2, 1]

You can only use this method with an array declared using the var keyword (that is, a variable):

let constantArray = [5, 1, 6, 4, 2, 3]

sort(&constantArray) { $0 > $1 }

// Fatal Error: cannot mutate a constant array

sorted<T: Comparable>(array: T[]) -> T[]
Returns a sorted array of elements, all of which must be comparable and equatable.

Declaration

func sorted<T: Comparable>(var array: T[]) -> T[]

Discussion
Use this method to sort using the standard < (page 41) operator. All values in the provided array must be of
types that conform to the Comparable (page 41) protocol, which inherits from the Equatable (page 39)
protocol:

let array = [5, 1, 6, 4, 2, 3]

let result = sorted(array)

Algorithms
Sorting

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

49

// result is [1, 2, 3, 4, 5, 6]

sorted<T>(array: T[], pred: (T, T) -> Bool) -> T[]
Returns a sorted array of elements using a given predicate closure.

Declaration

func sorted<T>(var array: T[], pred: (T, T) -> Bool) -> T[]

Discussion
Use this method to sort an array of elements using a closure. The closure must return a Boolean value to indicate
whether the two items are in ascending order (true) or descending order (false):

let array = [5, 1, 3, 4, 2, 6]

let result = sorted(array) { $0 > $1 }

// result is [6, 5, 4, 3, 2, 1]

Algorithms
Sorting

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

50

This table describes the changes to Swift Standard Library Reference .

NotesDate

New document that describes the key structures, classes, protocols, and
free functions available in the Swift Standard Library.

2014-07-18

2014-07-18 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

51

Document Revision History

Apple Inc.
Copyright © 2014 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer or device for personal use only and to
print copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.

No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-branded products.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and Xcode are trademarks
of Apple Inc., registered in the U.S. and other
countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT, ERROR OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.

Some jurisdictions do not allow the exclusion of
implied warranties or liability, so the above exclusion
may not apply to you.

	Swift Standard Library Reference
	Contents
	Part I: Types
	String
	Creating a String
	init()
	Declaration
	Discussion

	init(count:, repeatedValue:)
	Declaration
	Discussion

	Querying a String
	var isEmpty { get }
	Declaration
	Discussion

	hasPrefix(_ :) -> Bool
	Declaration
	Discussion

	hasSuffix(_ :) -> Bool
	Declaration
	Discussion

	Converting Strings
	toInt() -> Int?
	Declaration
	Discussion

	Operators
	+
	Declaration
	Discussion

	+=
	Declaration
	Discussion

	==
	Declaration
	Discussion

	<
	Declaration
	Discussion

	Array<T>
	Creating an Array
	init()
	Declaration
	Discussion

	init(count:, repeatedValue:)
	Declaration
	Discussion

	Accessing Array Elements
	subscript(Int) -> T { get set }
	Declaration
	Discussion

	subscript(Range<Int>) -> Slice<T>
	Declaration
	Discussion

	Adding and Removing Elements
	append()
	Declaration
	Discussion

	insert(_ :, atIndex:)
	Declaration
	Discussion

	removeAtIndex() -> T
	Declaration
	Discussion

	removeLast() -> T
	Declaration
	Discussion

	removeAll(keepCapacity: = false)
	Declaration
	Discussion

	reserveCapacity()
	Declaration
	Discussion

	Querying an Array
	var count { get }
	Declaration
	Discussion

	var isEmpty { get }
	Declaration
	Discussion

	var capacity { get }
	Declaration
	Discussion

	Algorithms
	sort(_ :)
	Declaration
	Discussion

	sorted(_ :) -> Array<T>
	Declaration
	Discussion

	reverse() -> Array<T>
	Declaration
	Discussion

	filter(_ :) -> Array<T>
	Declaration
	Discussion

	map<U>(_ :) -> Array<U>
	Declaration
	Discussion

	reduce<U>(_:, combine: (U, T)->U) -> U
	Declaration
	Discussion

	Operators
	+=
	Declaration
	Discussion

	Dictionary<KeyType, ValueType>
	Creating a Dictionary
	init(minimumCapacity: = 2)
	Declaration
	Discussion

	Accessing and Changing Dictionary Elements
	subscript(KeyType) -> ValueType? { get set }
	Declaration
	Discussion

	updateValue(_:, forKey:) -> ValueType?
	Declaration
	Discussion

	removeValueForKey(_:) -> ValueType?
	Declaration
	Discussion

	removeAll(keepCapacity: = false)
	Declaration
	Discussion

	Querying a Dictionary
	var count { get }
	Declaration
	Discussion

	var keys { get }
	Declaration
	Discussion

	var values { get }
	Declaration
	Discussion

	Operators
	==
	Declaration
	Discussion

	!=
	Declaration
	Discussion

	Numeric Types
	Boolean Types
	Integer Types
	Floating Point Types

	Part II: Protocols
	Equatable
	Determining Equality
	==
	Declaration
	Discussion

	Comparable
	Comparing Values
	<
	Declaration
	Discussion

	Printable
	Describing the Value
	description { get }
	Declaration
	Discussion

	Part III: Free Functions
	Printing
	Primary Functions
	print<T>(_:)
	Declaration
	Discussion

	println<T>(_:)
	Declaration
	Discussion

	println()
	Declaration
	Discussion

	Algorithms
	Sorting
	sort<T: Comparable>(inout array: T[])
	Declaration
	Discussion

	sort<T>(inout array: T[], pred: (T, T) -> Bool) -> T[]
	Declaration
	Discussion

	sorted<T: Comparable>(array: T[]) -> T[]
	Declaration
	Discussion

	sorted<T>(array: T[], pred: (T, T) -> Bool) -> T[]
	Declaration
	Discussion

	Revision History

